Scanning Laser Range Finder UXM-30LAH-EWA

User's Manual

Table of contents

1. Introduction	3
1.1 About this document/manual	3
1.2 Applicable product	3
1.3 Special markings and symbols	3
1.4 Cautions	4
1.5 Registered trademarks	4
2. Safety precautions	5
2.1 General precautions	5
2.2 Operating environment	5
2.3 Installation of UXM	5
2.4 Wiring	6
2.5 Configuration	6
2.6 Inspection and maintenance	6
3. Product overview	7
3.1 Features of UXM-30LAH-EWA	7
3.2 UXM-30LAH-EWA components	8
3.3 Operation principle	10
3.4 Area configuration	12
3.5 Area switching	13
3.6 Detection condition	14
3.7 ON delay/OFF delay	15
3.8 Hysteresis of detection area	17
3.9 Setting of UXM	19
3.10 Output	21
3.10.1 Detection Output 1 to Output 3	21
3.10.2 Malfunction output	21
3.10.3 Synchronous output	
3.10.4 Synchronous master output	
3.11 Input	
3.11.1 Area Input 1 to Input 4	
3.11.2 Synchronous Input	
3.12 Indicator lamp	23
4. Application examples of the UXM	24
4.1 Obstacle detection	24
4.2 Access protection	25
5. Installation	

5.1 Caution for installation	
5.2 Optical axis adjustment	
5.3 Light interference	
5.4 Mutual intreference	
5.5 Synchronous operation	
5.5.1 Example of phase setting	
6. Wiring	
6.1 Precautions	
6.2 Power supply	
6.3 Wire colour and function	
6.4 Input/Output circuit	
6.4.1 Input circuit	
6.4.2 Output circuit	
6.5 Interface connector	
7. Setting of Area Designer	
7.1 Area Designer	
7.2 System requirements	
8. Communication	
8.1 Ethernet setting	
8.1.1 Initial value	
8.1.2 IP Initialization	
8.2 Communication protocol	
8.3 Error code table	
8.4 Detail on measurement values	
9. Inspection and maintenance	
9.1 Pre-operation inspection	
9.2 Operation inspection	
9.3 Daily inspection	
9.4 Periodical inspection	
9.5 Cleaning the optical window	
10 Trobleshooting	
11. Specification	
12. Applicable directives and standards	
13. Package contents	
14. External dimension	51
15. Revision history	
16. Representative contacts	53

1. Introduction

This user's manual is designed with the purpose of providing guidelines and instructions for the machine user or system designer while operating, installing, wiring and servicing the UXM-30LAH-EWA sensor.

1.1 About this document/manual

The UXM's features, installation and handling method are described in this document.

- Make sure to read carefully and understand this document before installation, wiring, operation, inspection and maintenance.
- User should have a copy of this document at an easy-to-access place for quick reference.
- Any modifications or disassembly of the UXM is prohibited. Modifications will affect sensor performance and detection capability that could lead to critical injury and death.
- Any modifications or disassembly of the UXM will void the warranty.
- All information in this user's manual is subject to change without prior notice. For the latest information visit our company's website http://www.hokuyo-aut.jp

1.2 Applicable product

This document is for the following sensor model.

UXM-30LAH-EWA

1.3 Special markings and symbols

Markings and symbols are used in this document to alert the user about safety-related issues. Follow the instructions of these special markings and symbols to ensure safety during the operation.

Mark	Meaning
Danger	Procedures that could lead to dangerous situation, critical injury or death if not
	carried out properly.
	Procedures that could lead to dangerous situation, serious injury or physical
	damage if not carried out properly.
Note	Points that should be considered for the proper operation.
HOLE	

1.4 Cautions

- The UXM has been shipped upon strict quality control. If you find any defect in the product, contact the nearest distributor or sales representative.
- Hokuyo cannot be held responsible for damages or failure due to misuse of the product.
- The actual product may differ from the illustrations and figures in this documents as they are used for explanatory purpose only.

1.5 Registered trademarks

- Microsoft[®], Windows[®] are the registered trademarks of Microsoft Corporation USA.
- Pentium[®] are the registered trademarks of Intel Corporation or respective country.
- Beside that, other product names, company name mentioned are trademarks or registered trademarks of their respective companies.

2. Safety precautions

Make sure to read the following safety precautions for the correct use and operation of the UXM.

2.1 General precautions

- The UXM uses laser radiation for detecting objects within configured area.
- Perform pre-operation tests in order to verify the performance of the UXM.
- User should prepare test pieces for detection capability verification test. The test piece should emulate the smallest object that is intended to be detected during operation.
- Operate the UXM within the specifications described in this user's manual. Also, perform the necessary maintenance to prevent deterioration of UXM's detection capability. (Refer to chapter 9)
- Do not modify or disassemble the UXM. This could compromise the IP67 housing rating. Such modifications will void the warranty.
- The UXM is not a safety device. Do not use this sensor for the purpose of protecting humans.
- The detection capability of the UXM will decrease if dust covers the optical window. Regular cleaning of the optical window is necessary while working under dusty environment. (Refer to section 9.5)
- The UXM should be disposed as industrial waste or in accordance with the local disposal directives.

2.2 Operating environment

- Make sure that the UXM's operating environment is within the stated specification (temperature, ۲ humidity, vibration, ambient light, etc.)
- Do not use or mount the UXM near devices that could generate strong electromagnetic waves as it could affect the operation of the sensor.
- Do not use or mount the UXM in an environment of organic solvents, gas, or where corrosive substances are present. Working under such environments may decrease the detection capacity of the sensor.

2.3 Installation of UXM

- Install the UXM on a firm surface or structure to avoid displacement.
- Mount the sensor firmly to avoid optical axis displacement due to vibration and shock.
- Shock and vibration should not loosen the mounting. Detection result will be different if the sensor is displaced due to such condition.
- Mutual interference can occur when two or more UXM sensors are mounted at the same detection plane. Refer to chapter 5 (mutual interference and synchronous operation) for details.
- When using outdoors add necessary measures to prevent from rain and/or dust accumulation on the • optical window.
- When cover is used it should be of highly transparent material that does not influence detection property. (Light wavelength 905nm)
- The UXM should be mounted with a provision of sufficient space for maintenance.
- Do not put any object in the detection area of the UXM. It is not possible for the sensor to detect objects

that lie behind the obstacle.

Increasing the response time will also increase the stability of the UXM. However, this will reduce the detection capability towards moving objects. User must perform pre-operation tests before using this function.

2.4 Wiring

- Switch off all the power supplies during wiring.
- When a converter is used for supplying the power, make sure it fulfills the following requirements.
 - A rated output voltage within the range of DC 10V to 30V.
 - Use power source with 1A or more (1.5A or more DC 15V or less) current capacity. While using the heater additional 1A or more is required.
 - The power supply complies with the requirements of electromagnetic compatibility regulations (EMC) of the respective country, states and district.
- All the input/output signal cables should be installed away from machines, power lines and highvoltage cables.

2.5 Configuration

- Pre-operation test must be performed to verify the configurations before operating the UXM.
- Changes made during the configuration must be recorded and saved.

2.6 Inspection and maintenance

- User must perform inspection and maintenance by referring to the following checklists provided in this document. (Refer to chapter 9)
 - Pre-operation inspection
 - Operation inspection .
 - Daily inspection
 - Periodical inspection .
 - Cleaning the optical window

Checklists in this document are provided as the basic guidelines while performing the test and maintenance. User must perform additional inspection and maintenance tasks deemed necessary for the respective application.

- Stop the machine and system if faults are detected during these tests.
- Clean the optical window when it gets contaminated. If the optical window is damaged it should be replaced by a new one, therefore contact the nearest distributor or sales representative.

3. Product overview

UXM emits pulsed laser beam which reflect on a rotating mirror within the configured area. When the emitted laser beams are reflected back from an object its distance is measured. This chapter describes the features and properties of the UXM-30LAH-EWA.

3.1 Features of UXM-30LAH-EWA

• Detection range : Maximum 80m

(Guarantee detection range: 0.1 to 30m 90% Reflectance white Kent paper 1000mm×1500mm)

- Detection angle :190°
- Angular resolution : 0.125°
- 15 set of areas (Configurable)
- Hysteresis of detection area (** 17 page)
- It is possible to configure area with its origin offset from the center of scanning beam.
- Easy configuration using PC installed with configuration application software (Area Designer)
- Teaching function.
- Minimum response time of 100ms (Configurable)
- Malfunction output: Activates malfunction output according to self-diagnosis function.
- Synchronize function: A maximum of 4 sensors for master/slave operation is possible (129 page)
- ON/OFF delay function (**F** 15 page)
- Filter function (**** 19 page)
- Limited detection capacity zone (12 page)
- Minimum detection width (¹² 20 page)
- Heater function (19 page)
- SCIP communication protocol

UXM can be used for the following applications:

- For the crane operating application, obstacle detection, position detection of container etc.
- Access protection in the dangerous area, buildings (such as detection of vehicle, persons etc.)

Danger

This product is an auxiliary safeguard product only not a safety device. In the event of a product malfunction, it could cause a serious accident so use an additional safeguarding device such as bumpers. Also, take necessary measures such as backup circuit etc.

3.2 UXM-30LAH-EWA components

Figure 3-1 shows the components of UXM-30LAH-EWA

Figure 3-1 UXM-30LAH-EWA components

Figure 3-2 shows the scanning range and detection zone origin of the UXM, while figure 3-3 shows its detection plane.

Figure 3-2 Scanning range and detection zone origin (Top view)

Figure 3-3 Detection plane of UXM (Front view)

Output region 1 Output region 3 Output region

3.3 Operation principle

Figure 3-4 Scanning range

Figure 3-4 shows the scanning range of the UXM. The sensor emits pulsed laser beam which reflect on a rotating mirror forming a fan-like scanning pattern over 190 $^{\circ}$ field. Maximum detection range is 80m for white Kent sheet. Detection range for objects of 10% diffused reflectance is 30m.

User can configure output regions 1, 2, and 3 by using the Area Designer application. When the sensor detects an object in the configured area, corresponding detection outputs are switched to OFF.

When the emitted laser beams are reflected back from an object, its distance is measured by applying the Time-of-Flight (TOF) principle. The duration of the reflected pulsed laser beam is taken for distance calculation as shown below.

$$L=\frac{1}{2} \times C \times T$$

Where, L=Distance of the object C=Speed of the light T=Time difference

The operation principle of TOF is shown in schematic diagram (Figure 3-5) below

Figure 3-5 TOF operation principle

3.4 Area configuration

The detection area of the UXM consist the output regions 1, 2 and 3 respectively. Output 1 to Output 3 can be configured by using the Area Designer application software through an Ethernet cable. Area configuration methods can be Independent and Dependent. A maximum of 15 sets of areas can be configured.

For the Independent method the following shapes are supported: Polygon, Arc and Rectangle.

Figure 3-6 Area configurations (Independent method)

For the Dependent method, the following shapes are defined: Straight line, Fan, and Ratio. In the dependent method, output 1 serves as a basis for output 2. Similarly, output 2 can be set as the basis for output 3.

Figure 3-7 Area configurations (Dependent method)

When setting the output region 2 as dependent on output region 1, the following dependent methods can be selected: a) Straight line, b) Fan shape, c) Ratio. By moving the offset bar in the Y-axis, it changes the size of output region 2. The output 2 cannot be made larger than the output 1. Similarly, the output region 3 is used as a basis output region 2.

For details on area configuration methods, refer to the Area Designer sensor configuration tool Instruction manual.

When the sensor detects an object in the configured output region 1 to output region 3, the corresponding outputs signals are switched to OFF state and the corresponding LEDs are also lit.

Danger • User should prepare test pieces for detection capability verification test.

3.5 Area switching

A maximum of 15 sets of areas can be configured. For area switching, input signals 1 to 4 are required. Table 3-1 below shows the combination of input signal to switch the area. Laser is switched off when all the area inputs 1 to 4 are switched ON.

Note

• Laser is switched ON only in the selected area.

Area Number	Area Input 1	Area Input 2	Area Input 3	Area Input 4
Laser off	ON	ON	ON	ON
Area1	OFF	ON	ON	ON
Area2	ON	OFF	ON	ON
Area3	OFF	OFF	ON	ON
Area4	ON	ON	OFF	ON
Area5	OFF	ON	OFF	ON
Area6	ON	OFF	OFF	ON
Area7	OFF	OFF	OFF	ON
Area8	ON	ON	ON	OFF
Area9	OFF	ON	ON	OFF
Area10	ON	OFF	ON	OFF
Area11	OFF	OFF	ON	OFF
Area12	ON	ON	OFF	OFF
Area13	OFF	ON	OFF	OFF
Area14	ON	OFF	OFF	OFF
Area15	OFF	OFF	OFF	OFF

Table 3-1 Input states and corresponding area number

OFF: High level, ON: Low level

Response time: 2 Scan (100ms)

3.6 Detection condition

In the configured area, if the detectable size (width) is more than the minimum detectable objects an output signal is displayed (for setting refer to section 3.9). The width of detectable object can be calculated as shown in figure 3-8.

Figure 3-8 Schematic diagrams for the calculation of detection width

If the area is configured with a narrow width below the minimum detectable size, be careful that the output signal may not be displayed for a short distance as shown in figure 3-9.

Figure 3-9 Caution of area configurations when minimum detectable size

- Depending upon the laser spot, environment and the detection object, the actual width of detected objects may differ from the width measured.
 - User should verify detection capability before using the actual object.

Caution

3.7 ON /OFF delay

ON delay and OFF delay of the output signal can be set by using Area Designer within the range of 50ms to 6400ms with an interval of 50ms. (Default is 50ms)

ON delay is the response time changing from ON state to OFF state after detecting the object. OFF delay is the response time changing from OFF state to ON state while not detecting the object.

Increasing the response time will increase availability of the UXM. However, this will reduce the detection capability towards moving objects. User must perform verification tests before using ON/OFF delay function.

Schematic diagram for ON delay/OFF delay operation is as shown below.

1. Example of schematic diagram without OFF delay setting

3.8 Hysteresis of detection area

When a sensor detects an object near the boundary of the detection area, outputs 1 to 3 may oscillate (Changing of ON/OFF state) repeatedly. To prevent such oscillation, sensor has a hysteresis function that temporarily increases the area size. If the object is not detected in the temporarily increased area, then it will return to the original detection area.

Hysteresis changes according to the set detection area distance. The minimum and the maximum temporarily increased detection area size can be specified using Area Designer. Minimum detection value will be used if the value is 5000mm or less. Also, maximum detection value will be used if the value is 30000mm or more. For distances between 5000mm to 30000mm; the value is computed using the linear interpolation method from the minimum and maximum values.

Hysteresis = $(Max value - Min value) / (25000) \times Distance + (6 \times Min value - Max value) / 5$

Figure 3-11 Hysteresis additional value

Note

- When you set the detection area close to a wall, set the hysteresis to the minimum value. If the surface of the wall is within the hysteresis detecting area range, then the output will not return to its original state.
 - Judgment Area : From object absent to object present
 Judgment area
 Detection area
 Wall
 Judgment Area : From object present to object absent

3.9 Setting of UXM

Setting of operating parameter of UXM by Area Designer.

Table 3-2 describes UXM's parameters and settings.

Table 3-2 Parameter settings

Para	ameter		Description					
		To pr	To prevent mutual interference between the sensors, motor synchronize					
		angle can be set by delaying the rotation.						
Motor s	ync angle	For d	For details on synchronization operation, refer to chapter 5.5					
						Se	tting	
		0 deg 90 deg 180 deg 270 deg					270 deg	
		Hoot	r is in	tornolly m	ounted	in tha	sonsor and th	is function will
		activa	ate Wi	hen the ten	nperatu	re ins	ide the sensor	decreases below
		0°C.7	This fu	nction stop	os its op	peratio	on automatical	lly when the
He	eater	temp	erature	increases	more th	han 1()°C.	2
				Setti	ng		Description	on
				OF	F	Can	not use heater t	function
				ON	1	Can	use heater fun	ction
		Inverti	ng outpu	uts logic of de	tection o	utput 1	to 3 can be set. Se	elect from below setting.
		Γ	S	etting		1	Description	1
Outp	ut logic	-	Acti	ve High	Norm	al dete	ection outputs F	Refer to 3.10.1
		Acti		ve Low	Invert	t detect	tion outputs	
		This f	This filter is used to remove the object if the object is not detected					
		stably at the same place. This filter is effective to remove rain and sno				emove rain and snow.		
		Selec	t from	below setti	ng.			
	D '	Se	tting		Referer	nce va	lue while using	g rain filter
	Rain	0) FF	Filter not	t used.			
		L	.ow	Used to	remove	nove rain maximum up to approx.100mm/h.		
		H	ligh	However,	the effec	t depe	nds upon the inst	allation environment
		Cautio	on: By s	setting the ra	ain filter,	, it bec	omes difficult to	o detect moving object.
Filters		This f	ilter is	used to rer	nove re	flectiv	vity (echoes) fr	om the fog.
	Select from			below setting.				
		Se	tting	Reference value while using fog filter				
		0	OFF	Filter not	t used.			
	Fog	I	.ow	Used in f	fog whe	n the	visibility is app	prox.100m.
		Me	dium	However	; the eff	fect de	epends upon th	e installation
		H	ligh	environn	nent			
		Cauti	Caution: By setting the filter high, it may not also detect the					
	objec	objects with high reflectivity.						

Para	meter	Description				
		Sensitivity filter is used to remove the objects with low reflectivity. Th				
		filter is effective to remove light interference and rain. Select				
		below setting.				
		Setting	Reference value while using sensitivity filter			
		OFF	Filter not used.			
	Sensitivity	Low				
		Medium	Difficult to detect object with maximum 1.8%			
		High	Tenecuvity			
		Caution: By usi	ing the sensitivity filter, detection capability for objects			
Filters		with low reflect	tivity will decrease.			
1 110015		Echo filter is us	sed in the environment with multiple echoes from the			
		rain, fog, dust, e	edges of the object or transparent object. Echo filter can			
		be selected first or last.				
			Setting			
	5.1		First			
	Echo		Last			
		If using a cover on the front part of the sensor, select last therefore,				
		does not detect	the object.			
		Caution: When	last is set, it may not detect the object smaller the laser			
		beam size.				
	Upper limit	Hysteresis uppe	er and lower limit can be set in the range of 0 to 250mm.			
Hysteresis		Hysteresis lowe	er limit cannot exceed the upper limit.			
	Lower limit	Refer to section	3.8 for Hysteresis of detection area.			
Minimum	detectable	Width of minimum detectable size can be set in the range of 10 to				
size		1000mm.It is effective for removing light interference, rain or snow etc.				
		Limited detection capacity zone can be set in the range of 60 to				
Limited de	tection	3000mm.The s	ensor cannot detect the object which enters at a limited			
capacity zone detection capacity			city zone. This limited detection capacity is used when			
using a cove			n the front part of the sensor.			

Table 3-2 Parameter settings

3.10 Output

The UXM has 4 types of outputs as below.

3.10.1 Detection Output 1 to Output 3

Detection Output 1: When the object is detected in the output region 1, ON (Low level) state will switch to OFF (High level) state.

Detection Output 2: When the object is detected in the output region 2, ON (Low level) state will switch to OFF (High level) state.

Detection Output 3: When the object is detected in the output region 3, ON (Low level) state will switch to OFF (High level) state.

3.10.2 Malfunction output

Sensor has self-diagnosis function and it switches the malfunction output ON state (Low level) to OFF state (High level) when errors are detected in the internal components (malfunction output during laser emission, motor rotation, etc.)

3.10.3 Synchronization output

Sensor outputs a 1ms pulse in every scan which is synchronized with the scanning. The timing of the synchronization signal is shown in the figure 3-12 below. Synchronization output signal in figure 3-13 below.

Figure 3-12 The timing of synchronization signal

During malfunction, synchronization output is OFF.

Figure 3-13 Synchronization output signal

3.10.4 Synchronization master output

It is a reference clock signal for synchronizing motor rotation of each sensor. 50ms of cycles and an output ON period (Low level) output the clock signal used as 12.5ms (Duty 25%).Output starts immediately after the power ON, and an output is continued even in the malfunction state.

When operation Master/Slave sensors, the synchronization output signal from the master is used as input for the synchronization input of a Slave. For details on the wiring of synchronization operation, refer to chapter 5.5 (Synchronization operation)

3.11 Input

The UXM has 2 types of inputs as below.

3.11.1 Area Input 1 to Input 4

These inputs are used in order to choose detection area. Table 3-1 shows the relation between input states and corresponding area number.

3.11.2 Synchronization input

When operating Master/Slave sensors, the synchronization output signal from the master is used as input for the synchronization input of a Slave. For details on the wiring of synchronization operation, refer to chapter 5.5 (Synchronization operation)

3.12 Indicator lamp

2 LED display indicates the UXM status. This LED display is located in the front of the UXM as shown in figure 3-14. Table 3-3 shows the description of the LEDs.

Figure 3-14 Indicator lamp

Table 3-3 Relation table between Indicator	lamp (LED)) and output signals
--	------------	----------------------

State of the sensor	Indication LED for power supply and operation (green)	Indication LED for area determination (orange)	Synchronization master output	Synchronization output	Malfunction output	Area Detection output 1 to 3
At start up	Blinking	ON		$Tr = OFF (Hi)^{*1}$	$Tr = OFF (Hi)^{*1}$	$Tr = OFF (Hi)^{*1}$
During operation	ON	Detection On No detection Off		For 1 ms at the cycle of 50 ms Tr = ON (Low)	Tr = ON (Low)	Detection Tr = OFF (Hi) No detection Tr=ON (Low)
Malfunction	Blinking (Inte	erval of 1 sec)		Tr = OFF (Hi)	Tr = OFF (Hi)	Tr = OFF (Hi)
Initialization of IP	Blinking 2 times holding the IP ini On (Initialization p been cor Blinking of the the LED (orang the sensor begins.)	after pushing and tialization switch roccessing of IP has npleted.) ELED (green) , e) is off. (Restart of e sensor has been leted.)	Output is always continued after the power supply for the sensor has been turned on*1	During initialization of IP Tr = ON (Low) During restart of the sensor Tr = OFF (Hi) *2	During initialization of IP Tr = ON (Low) During restart of the sensor Tr = OFF (Hi) *2	Tr = OFF (Hi) *2

Caution

^{*1}After power supply is ON approx. 5sec continue unstable state.

*2 The sensor will be in unstable state until sensor restarts after IP initialization process is completed.

4. Application examples of the UXM

In this chapter will explain giving some application examples where the UXM can be used. Before installing, user has to decide the main purpose for using the UXM. Next, decide the suitable installation place as well as required detection area size, etc. In case of area switching, it is necessary to configure in what type of condition and how area switching will takes place.

Caution
 UXM is not a safety device. It cannot be used for human protection purpose.
 Before setting the UXM, read the whole manual thoroughly.

4.1 Obstacle detection

Figure 4-1 Example of obstacle detection

Figure 4-2 Example of obstacle detection

4.2 Access protection

Figure 4-3 Example of access protection

5. Installation

This chapter describes precautions during sensor installation.

5.1 Caution of Installation

The UXM can be fixed to a surface using 4 pieces of M5 screw at back mounting plate. Mount the sensor at a height of 500mm above the floor. When mounting below 500mm, incline 1° in the upward direction. As shown in the below figure 5-1, the spread of the beam differs from front to side.

Figure 5-1 Spread of beam of UXM-30LAH-EWA

Distance (m)	Beam size(Refe	rence value)(mm)
Distance (III)	Front view	Side view
10	60×30	30×60
20	110×40	40×110
30	150×50	50×150
50	240×75	75×240
80	400×110	110×400

Table 5-1 Beam size (Reference value)

• Fix the sensor firmly so that the optical axis is not displaced by the vibration or resistance.

5.2 Optical axis adjustment

Angular tolerance with respect to structure axis is $\pm 0.2^{\circ}$ in the horizontal plane and $\pm 0.5^{\circ}$ in the vertical plane. (Figure 5-2) Use the adjustment mechanism for precisely adjusting the detection plane. Detection plane can be checked by Optical-Axis Checker (Model: UES-930, Sold separately)

Figure 5-2 Angular Tolerance with Respect to Structure Axis

5.3 Light interference

The UXM uses a pulsed laser for object detection. Light interference sources could lead to false detection. User should examine the surrounding environments before installation the UXM. If the light source cannot be avoided during the operation; then UXM should be installed with the light source located at ± 5 degrees or more from the detection plane in order to prevent interference. When sensitive filter is selected it might be effective for light interference.

Figure 5-3 Installation under light interference

5.4 Mutual interference

Extra precautions are required while using two or more identical UXM sensors because pulsed laser signals from identical UXM units could lead to false detection. Figures below show the installation method for avoiding mutual interference.

a) Changing the height of installation

Displace the installation position up and down; mutual detection original point of the UXM should be separated 5 degrees or more from detection plane.

Figure 5-5 Parallel installation

b) Changing the angle of installation

The installation angle of the UXM is changed; mutual detection original point of the UXM should be separated 5 degrees or more from detection plane.

Figure 5-7 Parallel installation

c) Adding shield in between UXM

By adding a shield in between the UXM units, laser beam cannot reach the opposite sensor so this will avoid possible mutual interference.

Figure 5-8 Opposite facing installation

Figure 5-9 Parallel installation

5.5 Synchronous operation

When operating two or more UXM units within a short distance mutual interference may occur. To prevent mutual interference between them, the rotation of maximum 8 UXM units can be synchronized (However, this cannot guarantee 100% prevention of mutual interference, depending upon the installation condition, background condition, etc., of each UXM. If interference cannot be avoided then, verify before the operation).

During 4 UXM units operation, one master and other three slaves can be set. During initial shipment the UXM is set as master, therefore it is necessary to configure a sensor as slave. Configuration of each UXM is done through the Area Designer. Example of connection is shown in figure 5-10.

Figure 5-10 Example of synchronization wiring (In case of 4 UXM)

5.5.1 Example of phase setting

In case of installing multiple units of UXM, figure 5-11 to figure 5-13 shows an example of phase setting.

a) Parallel installation

To prevent mutual interference between 2 units of UXM in a parallel installation. Set Master phase: 0° Slave phase: 90°

Figure 5-11 Example of parallel installation

b) Opposite facing installation

To prevent mutual interference between 2 units of UXM opposite facing installation. Set Master phase: 0° Slave phase: 180°

Master phase:0° Figure 5-12 Example of opposite facing installation

c) Installing 4 units of UXM

To prevent mutual interference between 4 units of UXM installed facing 4 different directions. Set Master phase: 0° Slave phase: 0°

Master/ Slave phase: 0°

Figure 5-13 Example of installing 4 units

Mutual interference could occur when multiple identical sensors are mounted on the same detection plane. The sensor cannot differentiate the self emitted laser pulse and the identical pulse from the other device causing the measurement error. Use ON delay setting to prevent such mutual interference.

When using a cover in the UXM, it should be of high transparency material that does not influence the detection property. (Wave length 905nm)

6. Wiring

This chapter describes precaution when wiring the UXM.

6.1 Precautions

During electric wiring, make sure that all devices are disconnected from power supply. Switch off all the power supply during wiring.

6.2 Power supply

Make sure that power supply is either DC 12V or DC 24V (operation voltage range 10V to 30V.) In case rated output voltage exceeds this range, UXM could be damaged.

When a converter is used as power supply, make sure it fulfills the following requirements.

- A rated output voltage within range of DC 10V to 30V.
- Use power source with 1A or more (1.5A or more DC15V or less) current capacity. While using the heater additional 1A or more is required.
- The power supply must comply with the requirements of electromagnetic compatibility (EMC) regulations of the respective country, states and district.

Danger • For safety, switch off all the power supply during wiring.

If there is an electric potential difference between the UXM and ground of other connected devices, then there is a possibility of malfunction due to noise or of damage. Prevent this by using potential equalization, isolation, etc.

6.3 Wire color and function

Table 6-1 shows the color of each lead wire, signal name, function, etc.

Flying lead cable of length 2 m with 16 shields.

Color	Signal	Function	Description	AWG
Brown	+VIN	Power	Power Supply: DC12V or DC24V	22
Blue	-VIN	Power	Power Supply: 0V	22
White/Red	Area Input 1	Input	Area switching Input 1	28
White/Blue	Area Input 2	Input	Area switching Input 2	28
White/Green	Area Input 3	Input	Area switching Input 3	28
White/Black	Area Input 4	Input	Area switching Input 4	28
White	Synchronous Input	Input	Synchronous input for Master/Slave operation	28
Orange	Malfunction Output	Output	Turns OFF when malfunction output is detected by	28
			self-diagnostic function.	
Pink	Detection Output 1	Output	When an object is detected in the output region 1 it	28
			is turned OFF	
Violet	Detection Output 2	Output	When an object is detected in the output region 2 it	28
			is turned OFF	
Yellow(Black)	Detection Output 3	Output	When an object is detected in the output region 3 it	28
			is turned OFF	
Green	Synchronous Output	Output	Synchronized motor rotation output is ON at 1ms	28
			pulse in every scan	
Yellow	Synchronous Master	Output	Reference clock signal for synchronizing motor	28
	Output		rotation	
Red	COM Input +	Input	COM Input +	28
Black	COM Input -	Input	COM Input -	28
Gray	NC^{*1}		Non Connect	28
Shield wire	FG		Frame ground	

Note: Color names inside brackets indicate dual color cable.

Keep the input wires open or connected to input Com+ (red) if not in use.

Keep the output wires open or connected to output Com- (black) if not in use.

Input/output direction is defined from the sensor point of view (sensor as reference).

*1 Internally connected. Do not connect as it is not used.

Caution • Mounting plate is used as a frame ground (FG).Mount the sensor on as stable structure.

6.4 Input/Output circuit

6.4.1 Input circuit

Photo coupler input circuit (anode COM, Input ON current 2mA, OFF current 0.5mA or less)

6.4.2 Output circuit

NPN Open output collector circuit

Item	Specification
Maximum output current	50mA
Maximum applied voltage	30V
Output residual voltage	1V or less
Power supply range at $+COM$	10 to 30V

Table 6-2Output circuit specification

Figure 6-1 Example of connecting input / output circuit

6.5 Interface connector

Sensor setting and measurement data can be obtained by Ethernet connection. User should prepare Ethernet cable which connects a sensor with PC. CAT5 (Standard twisted-pair cable) is used which connects between the Ethernet connecting plug (a straight type plug or L type plug) and the RJ-45 modular plug. Pin assignment of each plug is shown in table 6-3 and table 6-4.

Connector

Maker:Binder Type:09-0431-87-04

Figure 6-2 Connector (Sensor side)

Ethernet connector plug

Maker: Binder

Straight type plug:99-0430-57-04

L type plug :99-0430-69-04

Table 6-3 Connecting plug

PIN No.	Function	Wiring color (T568A)		
1	TX+	White/Green		
2	TX-	Green		
3	RX+	White/Orange		
4	RX-	Orange		

Table 6-4 Example of RJ-45 Modular wiring

DIN No	Wiring color			
PIN NO.	Straight	Cross		
1	White/Green	White/Orange		
2	Green	Orange		
3	White/Orange	White/Green		
4	Blue	Blue		
5	White/Blue	White/Blue		
6	Orange	Green		
7	White/Brown	White/Brown		
8	Brown Brown			

Ethernet connection plug is as below

Table 6-5	Ethernet	connection	plug
-----------	----------	------------	------

Code No. Name		Туре
UZ00024	Straight type plug	UXM-CN01
UZ00025	L type plug	UXM-CN02

7. Setting of Area Designer

Install the application software (Area Designer) in a supported operating system and connect UXM using an Ethernet cable. (For details refer to section 6.5).

Area Designer has the following functions:

- Configuration of detection area
- Configuration of various UXM functions
- Display of measurement data
- Record and playback of measurement data
- Project data management (Save and open of project data).

7.1 Area Designer

Application software (Area Designer) can be downloaded from our homepage.

For details of installation and operation please refer to Area Designer sensor configuration tool Instruction manual.

7.2 System requirements

Table 7-1 Minimum system required for Area Designer

	CPU	Pentium®IVprocessor of 800MHz or above	
PC	RAM	512MB or more	
	Hard disk	150MB minimum free space	
	Microsoft® Windows 7 Professional		
Compatible OS	Microsoft® Windows 8.1		
	Microsoft® Windows 10		
Display	High color (16 bit color) or above , 800×600 dot or above		

Microsoft[®], Windows[®] are the registered trademarks of Microsoft Corporation USA.

The operation in the below system environment cannot be guaranteed.

- Other OS that is not mentioned above
- NEC PC98 series and its compatible device
- Self-assembled PC
- Multi boot environment
- Multi monitor environment

- Operation is not guarantee even if the system requirements are fulfilled.
- Note Read thoroughly the Instruction manual of Area Designer for configuring UXM. • Instruction manual can be loaded from the help menu of Area Designer.

8. Communication

8.1 Ethernet setting

8.1.1 Initial value

 Initial value of IP:
 192.168.0.10

 Port No.:
 10940

8.1.2 IP Initialization

Remove the rubber cap located at the bottom of the sensor. Press and hold this switch for more than two seconds in order to start the IP initialization process. When the sensor restarts after blinking green and orange LEDs, release the switch. After initialization process is completed, return the cap to its original position. For details on changing the IP address, refer to the manual of IP change tool.

Figure 8-1 UXM-30LAH-EWA (Bottom part)

8.2 Communication protocol

For details on the communication protocol, refer to the UXM series LA type Communication specification (C-42-04041).

8.3 Error code table

The cause of an error can be obtained from STAT line of the "II" Command response, in the SCIP communication protocol. The error codes and solutions from the STAT line are as follows in table 8-1.

ID	Message	Meaning	Solution
000	no error.	Normal operation	No action is required
050	internal chip access failed.	Sensor processing system error	
100	internal chip access failed.	Same as above	
150	internal chip access failed.	Same as above	Sensor has failed and
151	internal chip initialize failed.	Sensor processing system initialization failure	needs to be repaired.
200	encoder error.	Encoder fault	
250	motor startup failed.	Motor fault	
251	motor rotation error.	Unstable motor rotation	Reduce the vibration and noise to the sensor
300	laser too high.	Laser fault	Reduce the ambient
301	laser too low.	Same as above	light and noise to the
302	laser no echo.	Same as above	sensor
303	measurement error.	Measuring data processing fault	Reduce the vibration, ambient light and noise to the sensor

Table 8-1 Error code

8.4 Detail on measurement values

In table 8-2 the details of output value x for each measurement steps.

Table 6-2 Distance value			
Distance value "X"	Meaning		
x < 23	Measurement error. Distance cannot be measured due to the light influence or noise.		
$23 \le x < 120000$	Measured distance value (mm)		
120000 ≤ x	Object does not exist or the object has low reflectivity.		

Table 8-2 Distance value

9. Inspection and maintenance

Inspection and maintenance are necessary for safety operation. User must ensure that inspection and maintenance are carried out as specified.

Before performing inspection and maintenance, confirm the following items.

- The machine monitored by the UXM is switched OFF.
- The surrounding of the working environment is safe.

Danger

Caution

• Do not modify or dissemble the UXM during inspection as this will affect the detection capability of the sensor leading to critical injury or death.

- This manual only suggests the basic steps for inspection and maintenance. User should perform additional inspection and maintenance if needed. User should follow necessary steps in accordance to the working environment.
- Depending upon the operating environment, follow the necessary procedure.
- All inspections should be performed during initial commission of the UXM.

9.1 Pre-operation inspection

After configuration is completed, pre-operation inspection test should be performed using a test piece. User should perform this inspection without connecting the sensor to the system. Table 9-1 shows an example of pre-operation inspection items list.

No.	Check item	Condition		Domonia
		Yes	No	Kelliark
1	UXM is correctly mounted at the intended location and			
1	screws are firmly fastened			
2	All the wirings are correctly connected			
2	When the test piece is placed in the detection area			
3	Output 1 to 3 switch from ON state to OFF state			
4	When the test piece is removed from the detection area			
	Output 1 to 3 switch from OFF state to ON state			
5	Area switching is according to input signal			

Table 9-1 Pre-operation inspection list

* Must check items 3 and 4 for all the areas.

9.2 Operation inspection

This test should be performed when pre-operation inspection is completed. This operation inspection must be performed with sufficient safety measures been taken. If this inspection test is done before pre-operation test, then the system can get damaged. Table 9-2 is an example of operation inspection list.

No.	Check item	Condition		Demende
		Yes	No	кешагк
1	When the test piece is placed in the detection area			
1	Output 1 to 3 switch from ON state to OFF state			
2	When the test piece is removed from the detection area			
2	Output 1 to 3 switch from OFF state to ON state			
3	Area switching is according to input signal			
4	Predetermined system operation is carried out as expected			

Table 9-2 Operation inspection list

* Must check items 1 and 2 for all the areas.

9.3 Daily inspection

Below table 9-3 shows an example of the items that should be checked during daily inspection.

No	Check item	Cond	lition	Domoniz
110.		Yes	No	кешатк
1	UXM is correctly mounted at the intended location and			
1	screws are firmly fastened			
2	All the wirings are correctly connected			
3	When the test piece is placed in the detection area			
	Output 1 to 3 switch from ON state to OFF state			
4	When the test piece is removed from the detection area			
4	Output 1 to 3 switch from OFF state to ON state			
5	Area switching is according to input signal			
6	Predetermined system operation is carried out as expected			

Table 9-3 Daily inspection list

 \ast Must check items 3 and 4 for all the areas.

9.4 Periodical inspection

Periodical inspection should be performed to ensure the detection capability of the UXM. Table 9-4 below shows an example list of periodical inspection items. It is recommended to perform this inspection in six months interval. This inspection should be performed together with daily inspection.

No	Check item	Condition		Demesik
110.		Yes	No	кепагк
1	Screw are tightly fastened			
2	No displacement from the original mounting position			
3	No scratch or crack on the optical window			
4	Screws of the optical window are tightly fastened			
5	No oil/grease or dirt on the optical window			
6	No visible damage on the UXM			
7	Cable connector is in good condition and tightly fastened			
0	When the test piece is placed in the detection area			
0	Output 1 to 3 switch from ON state to OFF state			
0	When the test piece is removed from the detection area			
9	Output 1 to 3 switch from OFF state to ON state			
10	Area switching is according to input signal			
11	Pre-determined system operation is carried out as expected			

* Must check items 8 and 9 for all the areas

Note

For the traceability purposes it is recommended to maintain and store the maintenance and inspection records.

9.5 Cleaning the optical window

Dust covering the optical windows affects the detection capability of the UXM. When you install UXM in the dusty environment, regular cleaning of the optical window is needed.

According to the contamination situation follow the below method:

- Wipe the optical window with a clean soft cloth.
- Clean the optical window with a soft brush.
- Blow off the dust on optical window using air-blower.
- Clean the optical window with mild detergent if it is contaminated with oil/grease particles.

- Do not use organic solvents (such as thinner, benzene and acetone) for cleaning.
 Plastics parts and paint might be affected.
 - Do not use abrasive cleaner. It might scratches the optical window and result to the loss in the detection efficiency.

10. Troubleshooting

• While using this sensor, if problem occurs, then refer to the following table.

Situation	Possible reason	Solution suggestion	
	Power supply is	Make sure power supply is ON	
UXM is not	OFF /Over voltage/	Voltage is within the specification	
	Under voltage		
operating	Cable is damaged	Power supply cable is in good condition	
		Replace with a new cable	
	Configuration is	Reconfigure UXM	
	incomplete		
	PC trouble	Check the PC's specification. Make sure the specification is	
UXM does not		compatible. Close other unrelated applications and reconnect	
connect with		Make sure the power supply is ON	
Area Designer	Power supply is OFF	Voltage is within the specification	
		Power supply cable is in good condition	
	Ethernet cable is not	Make sure the LAN cable is connected to both PC and UXM	
	connected to LAN port		
	IP address of PC is not set	Set the IP address of the PC	
Obstacles are not	Power supply is OFF	Voltage is within the specification	
detected inside the	UXM is in malfunction	Make sure that power supply LED is in normal state	
selected detection	state	Restart UXM if it is blinking.	
area			
	Light interference	Mount UXM at a location free from light interference	
		Refer to chapter 5 light interference for counter measures	
	Mutual interference	Refer to chapter 5 Mutual interference and synchronous	
		operation for counter measures	
Output remains	Contaminated optical	Check for any contamination or damage on the optical	
OFF even if no	window	window	
object in the	Floor is detected	Make sure floor is not detected.	
detection area		Reconfigure the detection area. Make sure that the background is not within the detection	
	Background is detected		
		area. Reconfigure the detection area.	
	Malfunction state due to	Make sure power supply LED is not blinking (normal state).	
	self-diagnostic function		
	Hysteresis setting	Reconfirm the hysteresis setting.(Refer to section 3.8)	

Table 10-1 Troubleshooting list

• For repairing the UXM, please contact our nearest distributor or sales representative. Do not repair or disassemble the UXM. Such modifications will void the warranty.

11. Specification

	Table 11-1 Specification of UXM-30LAH-EWA		
Product name	Scanning laser range finder		
Model	UXM-30LAH-EWA		
Supply voltage	$2V/DC24V$ (Operating range DC10V to DC30V, ripple within $\pm 10\%$)		
	Steady current : 300mA or less Start current: approx.750mA (when using DC24V)		
Supply current	Steady current : 600mA or less Start current: approx.1500mA (when using DC12V)		
	While using the heater (0° or below) : Requires 1A or more in addition		
Light source	Laser semiconductor (905nm), Laser class 1		
Detection range and object	0.1m to 80 m ^{*1} (White Kent sheet Reflectance 90%) 0.1m to 30 m ^{*1} (Black paper Reflectance 10%) Maximum detection distance : 80m		
	Minimum detectable size 33mm (5m), 65mm (10m), 200mm (30m)		
	10% Reflectance Black paper 0.1 to $15m \pm 30mm$, 15 to $30m \pm 50mm^{*1}$		
Accuracy	0.1 to $30m \pm 50mm^{*2}$ Ambient illuminance : 3,000lx or less		
	0.1 to 20m:±50mm ^{*2} Ambient illuminance:100,000lx or less		
	90% Reflectance white Kent paper 0.1 to $30m \pm 30mm^{*1}$		
	0.1 to $30m \pm 50mm^{*2}$ Ambient illuminance : 3,000lx or less		
	0.1 to 30m:±50mm ^{*2} Ambient illuminance:100,000lx or less		
	10% Reflectance Black paper 0.1 to $15m$; $\sigma < 10mm$, $15 \sim 30m$; $\sigma < 15mm^{*1}$		
	0.1 to $30m$; $\sigma < 20mm^{*2}$ Ambient illuminance: 3,000lx or less		
	0.1 to $20m$; $\sigma < 30mm^{*2}$ Ambient illuminance: 100,0001x or less		
Repeat accuracy	90% Reflectance white Kent paper 0.1 to $30m \cdot \sigma < 10mm^{*1}$		
	$0.1 \text{ to } 30\text{m}$: $\sigma < 15\text{mm}^{*2}$ Ambient illuminance: 3.0001x or less		
	0.1 to 30m ; σ <30 mm ^{*2} Ambient illuminance: 100,000 lx or less		
Measurement	1mm		
Seen angle			
Scan angle	190° 50 ma (Mater en est 1200 mm)		
	Sums (Motor speed 1200rpm)		
Angular resolution	Approx. 0.125°		
Start up time	within 50 sec		
Outputs	6 Output: Area detection output 1 to 3, Malfunction output, Synchronization output, Synchronization master output		
Inputs	5 Output: Input 1 to 4: Area switching inputs		
mputs	Synchronization input: Input synchronization signal during slave operation.		
Degrade	OFF 50msec to 6400msec		
kesponse time	ON 50msec to 6400msec		
Interface	rnet 100Base –TX (Auto-negotiation)		

Indicator I ED	Green LED : Power supply and normal operation		
	Orange LED: Area determination (About indicator lamp refer to section 3.12)		
Ambient temperature, humidity	-10° C to $+50^{\circ}$ C below 85% RH (Without dew, frost)		
	-30° C to $+50^{\circ}$ C below 85% RH (When heater in use)		
	(Without dew, frost)		
Environment effect	Measured distance will be shorter than the actual distance under the influence of		
	rain, snow and direct sunlight. *3		
Storage temperature, humidity	-30° C to $+70^{\circ}$ C below 85% RH (Without dew, frost)		
Vibration resistance	10 to 55Hz double amplitude of 1.5mm for 2hrs in each X, Y, and Z direction		
	55 to 200Hz 19.6m / s^2 sweep of 2min for 1hr in each X,Y and Z direction		
Shock resistance	196m/s ² (20G) X,Y and Z directions each 10 times		
Insulation resistance	10MΩ, DC 500V Megger		
Protective structure	IP67		
Weight	1200g (With cable included)		
Material	Front face of the case, Optical window : Polycarbonate		
	Back face of the case : Aluminum		
Dimensions (W×D×H)	124×126×150 (mm) (Without connector)		

^{*1}Indoor environment (Fluorescent lamp should be 1,000lx or less)
 ^{*2}Detection cannot be guaranteed when direct light (such as sunlight) enters the device.
 ^{*3}Depending upon the environment user should verify detection capability before using the actual object.

Angular Speed	360 deg/s
Angular Acceleration	$\pi/2$ rad/ s ²
Operation life	5 Years (Varies with operating conditions)

12. Applicable directives and standards

Table 12-1 shows the conformant EU directives and EN standards

Directives/Standard	Details
Directives	EMC Directives
	RoHS Directives
	(EMI)
	EN61326-1:2013
	EN55011:2009 + A1:2010
	(EMS)
	EN61326-1:2013
EMC Directives	EN61000-4-2:2009
	EN61000-4-3:2006 + A1:2008 + A2:2010
	EN61000-4-4:2012
	EN61000-4-6:2009
	EN61000-4-6:2014
	EN61000-4-8:2010

Table 12-1	Directives	and	Standards
------------	------------	-----	-----------

• About the laser safety

The UXM laser safety standard is class 1.

Average laser power · · · · 3.19mW or less

Wave length ······905nm (Infrared laser)

Peak Power · · · · · · 25W

Pulse cycle · · · · 55.5 KHz

Beam size ····· 150mm × 50mm (Distance: 30m at the sensor's front (For detail refer to 5.1 sections)*1

Standard · · · · · · · IEC60825-1 (2007) and (2014)

Accession number · · 1420428-000

About Laser Safety Standard Class 1: under normal operation conditions (operations which can be foreseen rationally) it is guaranteed as safety class laser. Additional measures are not necessary to maintain laser safety.

"Class 1 Laser Product (21 CFR 1040.10 and 1040.11)"

Figure 12-1 FDA Certified labels

Caution • Do not look directly into a laser beam.

13. Package contents

The following items are included in the package:

a) UXM-30LAH-EWA ×1

b) User's manual $\times 1$

14. External dimension

Figure 14-1 External dimension of UXM-30LAH-EWA

15. Revision history

Document No.	Amended No.	Revision date	Details
		June 2017	First Release

16. Representative contacts

Asia and others

Hokuyo Automatic CO., Ltd 540-0028 Osaka HU building, 2-2-5 Tokiwamachi, Chuo-ku, Osaka, Japan Tel: +81-6-6947-6333 Fax: +81-6-6947-6350 E-mail: overseas-sales@hokuyo-aut.co.jp URL: http://www.hokuyo-aut.jp

Europe

Hokuyo Automatic Co., Ltd. Amsterdam Branch Prof. J.H. Bavincklaan 2, 1183 AT Amstelveen, The Netherlands Tel: +31 20 240 01 10 E-mail: amsterdam.branch@hokuyo-aut.co.jp URL: http://www.hokuyo-aut.jp

North America

Hokuyo Automatic USA Corporation 2019 Van Buren Avenue, Suite A, Indian Trail, NC 28079, USA Tel: +1-704-882-3844 Fax: +1-704-628-0582 E-mail: sales@hokuyo-usa.com URL: http://www.hokuyo-usa.com

★The contents described in this document are based on the information as of June 2017. The external dimensions; specifications etc. are subject to change without notice.

