
Basler Cameras

PYLON DEPLOYMENT GUIDE
Document Number: AW001362

Version: 09 Language: 000 (English)

Release Date: 30 January 2020

Software Version: 6.x

Contacting Basler Support Worldwide

Europe, Middle East, Africa

Basler AG
An der Strusbek 60–62
22926 Ahrensburg
Germany

Tel. +49 4102 463 515
Fax +49 4102 463 599

support.europe@baslerweb.com

The Americas

Basler, Inc.
855 Springdale Drive, Suite 203
Exton, PA 19341
USA

Tel. +1 610 280 0171
Fax +1 610 280 7608

support.usa@baslerweb.com

Asia-Pacific

Basler Asia Pte. Ltd.
35 Marsiling Industrial Estate Road 3
#05–06
Singapore 739257

Tel. +65 6367 1355
Fax +65 6367 1255

support.asia@baslerweb.com

www.baslerweb.com

All material in this publication is subject to change without notice and is copyright
Basler AG.

AW00136209000 Table of Contents

Basler Cameras i

Table of Contents

1 Introduction. 1

2 Runtime Redistributable Package. 2

3 Copy Deployment . 3

3.1 Using Copy Deployment . 3

3.2 Choosing Files for Copy Deployment . 4
3.2.1 pylon Files . 4
3.2.2 Visual C++ Runtime Files. 8
3.2.3 pylon Camera Driver Packages . 11

3.3 Locating the pylon DLLs . 12
3.3.1 Method 1: Placing the pylon DLLs in the Application’s Working Directory . . . 14
3.3.2 Method 2: Registering the Application Path in the Windows Registry 15
3.3.3 Method 3: Running the Application Using a Batch File 16
3.3.4 Method 4: Using SetDllDirectory in the Source Code 18
3.3.5 Method 5: Creating and Embedding Assembly Manifests 21

3.3.5.1 Creating the Assembly Manifests (.manifest Files) 22
3.3.5.2 Creating the Application Configuration Files (.config Files) 23
3.3.5.3 Embedding the Manifest . 24

Revision History . 25

Introduction AW00136209000

1 Basler Cameras

1 Introduction

To deploy pylon software and camera drivers, two options are available:

 Copy deployment: Deploy the necessary files simply by copying them. This is the
recommended option if you want to deploy pylon as part of your own application.
Camera drivers must be installed separately using .msi installers.
For more information, see Chapter 3 on page 3.

 pylon runtime redistributable package (also known as "runtime installer"): Deploy the
necessary files and drivers using an installation program. This is the recommended option if
you want to perform an unattended or silent installation of the pylon software.
For more information, see Chapter 2 on page 2.

For the advantages and disadvantages of each option, see Table 1.

Deployment Option Advantages Disadvantages

Copy Deployment Side-by-side installation: Files

installed via copy deployment can

run side by side with other pylon

installations. Newer pylon versions

do not conflict with the deployed

version.

 If desired, pylon can be deployed

without shortcuts in the Windows

start menu or on the desktop.

 Full control over which files should

be installed and which should not.

 You must choose each installation file

manually and individually.

 No automatic installation routine. You

must provide and maintain your own

installer.

pylon Runtime

Redistributable Package

 Installation files are bundled in

feature sets, e.g., "USB_Runtime".

You don’t have to deal with

individual installation files.

 No side-by-side installation. If a newer

pylon version is installed, it replaces

the existing runtime version. If the

newer version is not binary compatible,

this can render your application

unusable.

Table 1: Advantages and Disadvantages of pylon Deployment Options

AW00136209000 Runtime Redistributable Package

Basler Cameras 2

2 Runtime Redistributable
Package

The pylon runtime redistributable package allows you to deploy the pylon files and drivers by
running an installation program.

This is the recommended option if you want to perform an unattended or silent installation of the
pylon software.

You can choose whether to install support for all camera interfaces (GigE, USB 3.0, CXP 2.0,
Camera Link) or whether to pick individual interfaces as required. If you want to install support only
for selected camera interfaces, see "Configuring and Customizing the Installation".

Configuring and Customizing the Installation

The runtime redistributable package (.exe file) accepts command line switches to customize and
configure the installation.

The options include, e.g.,

 running a "silent installation" without displaying any messages or windows during installation

 installing only specific components (e.g., only the C++ runtime files, the USB runtime files, the
USB camera driver, and the pylon Viewer)

 uninstalling specific components.

To access information about the available switches, launch the runtime redistributable package
(.exe file) from the command prompt with the /help or /? switch.

Example:

"Basler pylon Runtime 6.x.x.xxxx.exe" /help

A help window will appear, giving information about the available command line switches.

The redistributable package includes 32-bit and 64-bit files.

If the installer detects a 64-bit operating system on the target machine, the installer
automatically installs the 64-bit and the 32-bit files. Otherwise, it installs only the
32-bit files.

Copy Deployment AW00136209000

3 Basler Cameras

3 Copy Deployment

3.1 Using Copy Deployment

Copy deployment, also known as XCopy deployment, allows you to deploy the necessary files
simply by copying them to the target computer. Because there is no automatic installation routine,
you must provide and maintain your own installation routine to automate the process.

This is the recommended option if you want to deploy pylon as part of your own application.

 Set up your installation routine to

 copy the required pylon files to the target computer.
For a list of the pylon files, see Section 3.2.1 on page 4.

 execute the Visual C++ Redistributable Package installer.
For more information, see Section 3.2.2 on page 8.

 execute the appropriate camera driver installer (.msi file).
For a list of pylon camera driver installers, see Section 3.2.3 on page 11.

 Make sure your application’s executable file(s) can find the pylon DLLs on the target computer.
For more information, see Section 3.3 on page 12.

These steps and sub-steps can be carried out in any order.

When using copy deployment, do not deploy the files to a target directory
that is included in the Windows PATH environment variable and do not
extend the PATH variable to include the target directory.

Otherwise, the deployed version may conflict with future pylon versions you
install on the target computer.

To deploy pylon via copy deployment:

AW00136209000 Copy Deployment

Basler Cameras 4

3.2 Choosing Files for Copy Deployment

3.2.1 pylon Files

To deploy pylon using copy deployment, a set of .dll and .zip files must be copied to the target
computer. The file names and the number of files vary depending on the camera interface(s) that
you want your application to support (GigE Vision, USB 3.0 Vision, Camera Link, CoaXPress 2.0,
or multiple interfaces).

The files required for each interface are shown in Table 2. All files are available in 32-bit and 64-bit
versions, with identical file names. If your application is available in both 32-bit and 64-bit versions,
you must provide each file twice.

To obtain the files, install the pylon Camera Software Suite on your computer. During installation,
select the "Developer" profile and choose the desired interface(s).

After the installation, you can find the files in the \Runtime\x64 and \Runtime\Win32 subdirectories
of the pylon installation directory, unless otherwise noted. For details, see the "Notes" column in
Table 2.

To determine whether your application requires additional files that are not listed
in Table 2, you can run the Microsoft Dependency Walker tool (depends.exe), as
described in the "Understanding the Dependencies of a Visual C++ Application"
topic (https://docs.microsoft.com/en-us/cpp/windows/understanding-the-
dependencies-of-a-visual-cpp-application?view=vs-2019).

File Name GigE USB
3.0

CXP
2.0

Camera
Link

Notes

PylonBase_v6_1.dll x x x x

GCBase_MD_VC141_v3_1_Basler_pylon.dll x x x x

GenApi_MD_VC141_v3_1_Basler_pylon.dll x x x x

log4cpp_MD_VC141_v3_1_Basler_pylon.dll x x x x

Log_MD_VC141_v3_1_Basler_pylon.dll x x x x

NodeMapData_MD_VC141_v3_1_Basler_
pylon.dll

x x x x

XmlParser_MD_VC141_v3_1_Basler_
pylon.dll

x x x x

MathParser_MD_VC141_v3_1_Basler_
pylon.dll

x x x x

PylonGigE_v6_1_TL.dll x

gxapi_v12.dll x

Table 2: Files Required for Copy Deployment

Copy Deployment AW00136209000

5 Basler Cameras

ProducerGEV.cti x Only required in combination with a
GenTL consumer.
To use it, the environment variable
GENICAM_GENTL32_PATH or
GENICAM_GENTL64_PATH resp.
needs to be extended.

This works similarly to extending the
Windows PATH variable. For example,
set
GENICAM_GENTL32_PATH

to

GENICAM_GENTL32_PATH=%GENICAM_

GENTL32_PATH%;<copy_dir>/

Runtime/Win32

PylonUsb_v6_1_TL.dll x

uxapi_v12.dll x

ProducerU3V.cti x Only required in combination with a
GenTL consumer.
To use it, the environment variable
GENICAM_GENTL32_PATH or
GENICAM_GENTL64_PATH resp.
needs to be extended.

This works similarly to extending the
Windows PATH variable. For example,
set
GENICAM_GENTL32_PATH

to

GENICAM_GENTL32_PATH=%GENICAM_
GENTL32_PATH%;<copy_dir>/

Runtime/Win32

pylonCXP folders x The entire pylonCXP folders in the
Runtime\Win32\pylonCXP or
Runtime\x64\pylonCXP subdirectories
of the pylon installation directory

are required.

To use it, the environment variable
GENICAM_GENTL32_PATH or
GENICAM_GENTL64_PATH resp.
needs to be extended.

This works similarly to extending the
Windows PATH variable. For example,
set
GENICAM_GENTL32_PATH

to

GENICAM_GENTL32_PATH=%GENICAM_

GENTL32_PATH%;<copy_dir>\Runtim

e\Win32\pylonCXP\bin

PylonGtc_v6_1_TL.dll x

PylonCLSer_v6_1_TL.dll x

File Name GigE USB
3.0

CXP
2.0

Camera
Link

Notes

Table 2: Files Required for Copy Deployment

AW00136209000 Copy Deployment

Basler Cameras 6

CLAllSerial_MD_VC141_v3_1_Basler_
pylon.dll

x

CLProtocol_MD_VC141_v3_1_Basler_
pylon.dll

x

CLSerCOM.dll x Usually, you should include the
CLSerXYZ.dll provided by the
manufacturer of your Camera Link
frame grabber.

The CLSerCOM.dll file can only be
used to establish a Camera Link
connection via standard COM ports.

Basler_CameraLink.zip x Include this file if the camera
description file cannot be downloaded
from the camera device you are using.

BaslerCLProtocol.dll x This file must be copied from the
Runtime\CLProtocol\Win64_x64
subdirectory of the pylon installation
directory.

Place this file in a separate directory.

The 32-bit file must be placed in a
subdirectory named Win32_i86.

The 64-bit file must be placed in a
subdirectory named Win64_x64.

Example: If you have set up your
installation routine to copy the 32-bit
pylon DLLs to
C:\Program Files\Grab\dll\
pylon32\, the file must be copied to
C:\Program Files\Grab\dll\
pylon32\Win32_i86\.

Also, the GenICam path variable
GENICAM_CLPROTOCOL needs to be
extended. This works similarly to
extending the Windows PATH variable.
For example, change
GENICAM_CLPROTOCOL=C:\Program

Files\OtherVendor\CLProtocol
to

GENICAM_CLPROTOCOL=C:\Program

Files\OtherVendor\CLProtocol;

C:\Program Files\MyApp\

CLProtocol

PylonC_v6_1.dll o o o o Optional: Include this DLL if your
application uses the pylon C API or the
pylon C .NET API.

File Name GigE USB
3.0

CXP
2.0

Camera
Link

Notes

Table 2: Files Required for Copy Deployment

Copy Deployment AW00136209000

7 Basler Cameras

Basler.Pylon.dll o o o o Optional: Include this DLL if your
application uses the pylon .NET API.

This file must be copied from the
Development\Assemblies
subdirectory of the pylon installation
directory.

PylonC.NET.dll o o o o Optional: Include this DLL if your
application uses the pylon C .NET API.

This file must be copied from the
Development\Assemblies
subdirectory of the pylon installation
directory.

PylonGUI_v6_1.dll o o o o Optional: Include this file if your
application uses the pylon Image
Window feature.

PylonUtility_v6_1.dll o o o o Optional: Include this file if your
application uses the pylon Image
Handling Support features, e.g., the
Image Format Converter.

x = Required file, o = Optional file

File Name GigE USB
3.0

CXP
2.0

Camera
Link

Notes

Table 2: Files Required for Copy Deployment

AW00136209000 Copy Deployment

Basler Cameras 8

3.2.2 Visual C++ Runtime Files

The pylon DLLs depend on the following Visual C++ runtime files:

File Name GigE USB
3.0

CXP
2.0

Camera
Link

Notes

vcruntime140.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

msvcp140.dll x x x x C run-time library, standard C++
library support (version: Visual Studio
2017)

ucrtbase.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

msvcr100.dll x C runtime (CRT) library
(version: Visual Studio 2010)

msvcp100.dll x C runtime (CRT) library
(version: Visual Studio 2010)

api-ms-win-core-console-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-datetime-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-debug-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-errorhandling-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-file-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-file-l1-2-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-file-l2-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-handle-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-heap-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-interlocked-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-libraryloader-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-localization-l1-2-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-memory-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

Table 3: Visual C++ Runtime Files

Copy Deployment AW00136209000

9 Basler Cameras

api-ms-win-core-namedpipe-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-processenvironment-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-processthreads-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-processthreads-l1-1-1.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-profile-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-rtlsupport-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-string-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-synch-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-synch-l1-2-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-sysinfo-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-timezone-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-core-util-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

API-MS-Win-core-xstate-l2-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-conio-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-convert-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-environment-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-filesystem-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-heap-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-locale-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-math-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-multibyte-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

File Name GigE USB
3.0

CXP
2.0

Camera
Link

Notes

Table 3: Visual C++ Runtime Files

AW00136209000 Copy Deployment

Basler Cameras 10

These files must always be deployed together with the pylon DLLs. The files are available in 32-
bit and 64-bit versions, with identical file names. If your application is available in both 32-bit and
64-bit versions, you must provide each file twice.

To do so, two options are available:

 Run the Visual C++ Redistributable Package for Visual Studio 2015 or 2017, provided by
Microsoft. This is the recommended method. The installer will automatically copy the required
files to the respective Windows system directory (%windir%\System32 or %windir%\SysWOW64).
You can download the package from the Microsoft website:
2015 version: https://www.microsoft.com/en-us/download/details.aspx?id=48145
2017 version: https://visualstudio.microsoft.com/vs/older-downloads/. Expand the
Redistributables and Build Tools section and select the desired operating system version of
the redistributable package.

 Manually copy the files listed in Table 3 to the same target directory as the pylon DLLs. You
can use this deployment method to enable installation by users who don't have administrator
rights, or for applications that can be run from a network share.

For more information, see the "Choosing a Deployment Method" topic on the Microsoft Docs
websites:
https://docs.microsoft.com/en-us/cpp/windows/choosing-a-deployment-method?view=vs-2019
https://docs.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=vs-2019

api-ms-win-crt-private-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-process-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-runtime-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-stdio-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-string-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-time-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

api-ms-win-crt-utility-l1-1-0.dll x x x x C runtime (CRT) library
(version: Visual Studio 2017)

File Name GigE USB
3.0

CXP
2.0

Camera
Link

Notes

Table 3: Visual C++ Runtime Files

Copy Deployment AW00136209000

11 Basler Cameras

3.2.3 pylon Camera Driver Packages

Camera drivers must be installed separately using .msi packages.

To install the camera drivers on the target computer, set up your installation routine to execute the
corresponding .msi file.

The installer will automatically install the driver without displaying any messages or windows during
its progress ("silent installation").

The .msi packages for each interface are shown in Table 4. If you want your application to support
multiple camera interfaces, execute the respective .msi files one after the other.

To obtain the files, install the pylon Camera Software Suite on your computer. During installation,
select the "Developer" profile and choose the desired interface(s).

After the installation, you can find the files in the \Development\Redist\Drivers subdirectory of the
pylon installation directory.

 All camera driver packages include 32-bit and 64-bit files. If the installer
detects a 64-bit operating system on the target machine, the installer
automatically installs the 64-bit drivers. Otherwise, it installs the 32-bit drivers.

 Basler recommends executing the .msi file(s) via the Windows Installer Tool,
Msiexec.exe.

File Name (*) GigE USB
3.0

CXP
2.0

Camera
Link

Notes

pylon_GigE_Performance_Driver.msi x Install this driver if you are using the
GigE Performance Driver with a
supported Intel Network Adapter.

pylon_GigE_Filter_Driver.msi x Install this driver if you are not using the
GigE Performance Driver.

pylon_USB_Camera_Driver.msi x

pylon_CXP_Driver.msi x

Table 4: pylon Camera Driver Packages

AW00136209000 Copy Deployment

Basler Cameras 12

3.3 Locating the pylon DLLs

To deploy pylon via copy deployment, you must make sure your application’s executable file(s) can
find the required pylon DLLs on the target computer. Otherwise, your application won’t start or issue
an error message.

Enabling your application to find the pylon DLLs can be done in several ways:

 Place the pylon DLLs in the application’s working directory.
For more information, see Section 3.3.1 on page 14.

 Register the application path in the Windows registry.
For more information, see Section 3.3.2 on page 15.

 Run the application using a batch file.
For more information, see Section 3.3.3 on page 16.

 Use the SetDllDirectory function in the source code of your application.
For more information, see Section 3.3.4 on page 18.

 Create assembly manifests and embed them in your application project.
For more information, see Section 3.3.5 on page 21.

See Fig. 1 for a flowchart that helps you choose the right method.

Copy Deployment AW00136209000

13 Basler Cameras

Executable files
and pylon DLLs
can be placed in

the same directory

Yes

No

Application must
be launchable via
Command Prompt

Application source
code can be

modified

Fig. 1: Flowchart for Choosing the Right Method to Provide pylon DLLs

Use method 1
(See Section 3.3.1)

Use method 2
(See Section 3.3.2)

Use method 3
(See Section 3.3.3)

Use method 4
(See Section 3.3.4)

Yes

Yes

Yes

No

Application
supports delayed

loading of DLLs and
does not use
manifest files

No

Use method 5
(See Section 3.3.5)

No

AW00136209000 Copy Deployment

Basler Cameras 14

3.3.1 Method 1: Placing the pylon DLLs in the
Application’s Working Directory

The easiest copy deployment method is to set up your installation routine to copy the required
pylon DLLs to the same target directory as your application’s executable files. This enables your
application to find the pylon DLLs automatically.

Because this is also the most reliable method, you should always consider this option first.

This method will not work

 if you copy the pylon DLLs and your application’s DLLs to a common DLL
directory and copy your application’s executable files to a different directory.
The pylon DLLs and your application’s executable files must reside in the
same directory.

 if your application is available in 32-bit and 64-bit versions and if the 32-bit
and 64-bit executable files are copied to the same target directory. You can’t
copy all files to the same directory as the depending 32-bit and 64-bit pylon
DLLs share the same file names.

Copy Deployment AW00136209000

15 Basler Cameras

3.3.2 Method 2: Registering the Application Path in
the Windows Registry

To point your application to the pylon DLLs, you can register the application path ("AppPath") in the
Windows registry.

This is the recommended method if your application’s executable file(s) and the dependent pylon
DLLs can’t be placed in the same directory.

1. Set up your installation routine to copy the required pylon DLLs. If your application is available
in 32-bit and 64-bit versions, the 32-bit pylon DLLs must be copied to one target directory and
the 64-bit pylon DLLs to another.

2. Set up your installation routine to add or change the following registry entries:

a. Add the subkey
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\file.exe

where file.exe must be replaced by the name of your application’s executable file, e.g.,
Grab.exe.

b. Set the value of the subkey’s (Default) entry to the path of the application’s executable file,
e.g., C:\Program Files\Grab\Grab.exe.

c. Add a Path entry and set its value to the path of the directory containing the pylon DLLs,
e.g., C:\Program Files\Grab\dll\pylon32\.

In the Windows Registry Editor, the result should look like this (sample values):

3. If your application is available in 32-bit and 64-bit versions, repeat step 2 for the application’s
64-bit executable file and the directory containing the 64-bit pylon DLLs. For example, add a
second subkey Grab64.exe with the entries C:\Program Files\Grab\Grab64.exe and C:\Program
Files\Grab\dll\pylon64\.

If you use this method, your application will not be launchable via Windows
Command Prompt. For methods that allow launching the application via
Command Prompt, see Section 3.3.3 on page 16, Section 3.3.4 on page 18, and
Section 3.3.5 on page 21.

To deploy the pylon DLLs by registering the application path:

AW00136209000 Copy Deployment

Basler Cameras 16

3.3.3 Method 3: Running the Application Using a
Batch File

To point your application to the pylon DLLs, you can write a batch file that will temporarily add the
pylon DLL directories to the Windows PATH environment variable and then launch the application.

This is the recommended method if

 your application’s executable file(s) and the dependent pylon DLLs can’t be placed in the same
directory (see Section 3.3.1 on page 14) and

 your application must be launchable via Command Prompt and

 you can’t modify the source code of your application.

1. Set up your installation routine to copy the required pylon DLLs. If your application is available
in 32-bit and 64-bit versions, the 32-bit pylon DLLs must be copied to one target directory and
the 64-bit pylon DLLs to another.

2. Open a text editor, e.g., Notepad.

3. If your application is available

 only in a 32-bit version or only in a 64-bit version, add the following lines:

@ECHO OFF

SET relPath=DllDir

SET PATH=%~dp0%relPath%;%PATH%

SET app=%~dp0%~n0.exe

"%app%"

 in both 32-bit and 64-bit versions, add the following lines:

@ECHO OFF

SET relPathWin32=DllDir32

SET relPathX64=DllDir64

SET PATH=%~dp0%relPathWin32%;%~dp0%relPathX64%;%PATH%

SET app=%~dp0%~n0.exe

"%app%"

4. Replace the DllDir, DllDir32, and/or DllDir64 entries by the paths to the pylon DLL directories.
The paths must be relative to the directory containing the application’s executable files.
Example: Assuming the following target directories (sample values):

 Executable files: C:\Program Files\Grab\

 32-bit pylon DLLs: C:\Program Files\Grab\dll\pylon32\

 64-bit pylon DLLs: C:\Program Files\Grab\dll\pylon64\

In this case, you must set up the batch file like this:

To deploy the pylon DLLs using a batch file:

Copy Deployment AW00136209000

17 Basler Cameras

@ECHO OFF

SET relPathWin32=dll\pylon32

SET relPathX64=dll\pylon64

SET PATH=%~dp0%relPathWin32%;%~dp0%relPathX64%;%PATH%

SET app=%~dp0%~n0.exe

"%app%"

5. If your application is available

 only in a 32-bit version or only in a 64-bit version, save the batch file with the same file
name as your application’s executable file and with a .cmd file extension.
Example: If your application’s executable file is named Grab.exe, save the batch file as
Grab.cmd.

 in both 32-bit and 64-bit versions, save the batch file twice: The first time with the file name
of your 32-bit executable file, and the second time with the file name of your 64-bit
executable file. The contents of the batch file can remain exactly the same.
Example: If your application’s executable files are Grab32.exe and Grab64.exe, save the
batch file as Grab32.cmd and Grab64.cmd.

6. Set up your installation routine to copy the batch file(s) to the same directory as your
application’s executable file(s).

7. Make sure the user of your application launches the application via the batch file and not via
the executable file (e.g., by creating desktop shortcuts to Grab32.cmd and Grab64.cmd).

AW00136209000 Copy Deployment

Basler Cameras 18

3.3.4 Method 4: Using SetDllDirectory in the Source
Code

To point your application to the pylon DLLs, you can use the SetDllDirectory function (C++ only) in
the source code of your application.

This is the recommended method if

 your application’s executable file(s) and the dependent pylon DLLs can’t be placed in the same
directory (see Section 3.3.1 on page 14) and

 your application must be launchable via Command Prompt and

 you can modify the source code of your application.

1. Set up your installation routine to copy the required pylon DLLs. If your application is available
in 32-bit and 64-bit versions, the 32-bit pylon DLLs must be copied to one target directory and
the 64-bit pylon DLLs to another.

2. Open your application project in an IDE, e.g., Visual Studio.

3. At the beginning of your application’s source code, add the following preprocessor directives:

// Preprocessor directives for SetDllDirectory

#include <pylon/Platform.h>

// Path helper functions

#include "Shlwapi.h"

#pragma comment(lib, "Shlwapi.lib")

#include "TCHAR.h"

// Link delay load implementation needed when using SetDllDirectory

#pragma comment(lib, "delayimp")

4. In the application’s main() function, add the following lines:

// Set dll relative path

#if defined PYLON_32_BUILD

const TCHAR* relPath = TEXT("dllDirectory32");

#elif defined PYLON_64_BUILD

const TCHAR* relPath = TEXT("dllDirectory64");

#endif

To use SetDllDirectory, the pylon DLLs must be "delay loaded". Otherwise, the
application may search for the pylon DLLs too soon, i.e., before reaching the
SetDllDirectory function call, and exit with an error message.

If delay loading is known to cause problems in your application, you should use
assembly manifests instead of calling SetDllDirectory. Also, if your application
already uses assembly manifests, editing the existing manifest files is generally
an easier method. For more information, see Section 3.3.5 on page 21.

To deploy the pylon DLLs using the SetDllDirectory function:

Copy Deployment AW00136209000

19 Basler Cameras

// Path length of dll directory must be smaller than MAX_PATH

TCHAR dirPath[MAX_PATH];

// The following code is supported by Windows 7.

// For Windows 8 or higher, other Windows Path Functions are recommended esp.
// to avoid buffer overrun.

const int cErrorGetModuleFileName = 1; // replace with your special exit code

const int cErrorPathAppend = 1; // replace with your special exit code

const int cErrorSetDllDirectory = 1; // replace with your special exit code

// Assume this is the main function of a .exe, not of a dll. Otherwise use GetModuleHandle).

if ((0 == GetModuleFileName(NULL, dirPath, MAX_PATH)) || (ERROR_INSUFFICIENT_BUFFER ==
GetLastError()))

{

return cErrorGetModuleFileName;

}

// For Windows 8 or higher the use of PathCchRemoveFileSpec is recommended.

PathRemoveFileSpec(dirPath);

// Avoid buffer overrun when using PathAppend (i.e. here we don't care about the
// (also restricted) length of the dll's full path).

// For Windows 8 or higher the use of PathCchAppend is recommended.

if ((_tcslen(dirPath) + 1 + _tcslen(relPath) + 1 > MAX_PATH) || !PathAppend(dirPath,
relPath))

{

return cErrorPathAppend;

}

if (!SetDllDirectory(dirPath))

{

return cErrorSetDllDirectory;

}

5. Replace dllDirectory32 and dllDirectory64 by relative paths to the pylon DLL target
directories (see step 1). The paths must be relative to the directory containing the application’s
executable files. You can use the double-dots specifier to denote the parent directory of the
current directory.
Example: Assuming the following target directories (sample values):

 Executable files: C:\Program Files\Grab\bin\

 32-bit pylon DLLs: C:\Program Files\Grab\dll\pylon32\

 64-bit pylon DLLs: C:\Program Files\Grab\dll\pylon64\

In this case, you must replace dllDirectory32 by ..\\dll\\pylon32 and dllDirectory64
by ..\\dll\\pylon64.

AW00136209000 Copy Deployment

Basler Cameras 20

6. Use the /DELAYLOAD linker switch to specify which DLLs to delay load:

a. In the Solution Explorer pane, select a project.

b. In the View menu, select Properties Pages.

c. Navigate to Configuration Properties > Linker > Input.

d. Modify the Delay Loaded Dlls entry.
Example: /DELAYLOAD:PylonBase_v6_1.dll;PylonGUI_v6_1.dll

7. Build all versions of your project and deploy the newly created builds.

Copy Deployment AW00136209000

21 Basler Cameras

3.3.5 Method 5: Creating and Embedding Assembly
Manifests

To point your application to the pylon DLLs, you can create assembly manifests and embed them
in your application project.

This is the recommended method if

 your application’s executable file(s) and the dependent pylon DLLs can’t be placed in the same
directory (see Section 3.3.1 on page 14) and

 your application must be launchable via Command Prompt and

 you can modify the source code of your application and

 your application does not support delayed loading of DLLs or your application already uses
assembly manifests.

1. Create and deploy the assembly manifest files (.manifest files).
For more information, see Section 3.3.5.1 on page 22.

2. Create and deploy the application configuration files (.config files).
For more information, see Section 3.3.5.2 on page 23.

3. Embed the assembly manifest in your application project.
For more information, see Section 3.3.5.3 on page 24.

If your application already uses assembly manifests, simply add the required
pylon DLLs to the existing .manifest files.

To deploy the pylon DLLs using assembly manifests:

AW00136209000 Copy Deployment

Basler Cameras 22

3.3.5.1 Creating the Assembly Manifests (.manifest Files)

The .manifest files contain references to the pylon DLLs. For each version of your application
(32 bit or 64 bit), you must create a separate .manifest file. Each file must be copied to the
corresponding directory containing the pylon DLLs.

1. Open a text editor, e.g., Notepad.

2. If your application is available in a 32-bit version:

a. Create a new text file and add the following lines:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">

<assemblyIdentity type="win32" name="assemblyName32" version="1.0.0.0"

processorArchitecture="x86"/>

<file name="dll32FileName1" hashalg="SHA1"/>
<file name="dll32FileName2" hashalg="SHA1"/>

</assembly>

b. Replace assemblyName32 by a unique identifier for the 32-bit assembly, e.g., Grab.Assembly.

c. Use the <file> tags to refer to each required 32-bit pylon DLL. Replace each dll32FileName
entry by the file name of a required DLL. Add more lines if required.
Example:
<file name="GCBase_MD_VC141_v3_1_Basler_pylon.dll" hashalg="SHA1"/>

<file name="GenApi_MD_VC141_v3_1_Basler_pylon.dll" hashalg="SHA1"/>

<file name="Log_MD_VC141_v3_1_Basler_pylon.dll" hashalg="SHA1"/>

d. Save the file with the same file name as assemblyName32 and with a .manifest file extension,
e.g., save it as Grab.Assembly.manifest.

e. Set up your installation routine to copy the .manifest file to the directory containing the 32-
bit pylon DLLs, e.g., C:\Program Files\Grab\dll\pylon32.

3. If your application is available in a 64-bit version:

a. Create a new text file and add the following lines:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">

<assemblyIdentity type="win32" name="assemblyName64" version="1.0.0.0"

processorArchitecture="amd64"/>
<file name="dll64FileName1" hashalg="SHA1"/>
<file name="dll64FileName2" hashalg="SHA1"/>

</assembly>

Note: type must always be win32, also for 64-bit applications.

b. Replace assemblyName64 by a unique identifier for the assembly, e.g., Grab64.Assembly.
If your application is available in both 32-bit and 64-versions, the identifier must be different
from the identifier specified in step 2.

To create and deploy the .manifest file(s):

Copy Deployment AW00136209000

23 Basler Cameras

c. Use the <file> tags to refer to each required 64-bit pylon DLL. Replace each dll64FileName
entry by the file name of a required DLL. Add more lines if required.
Example:
<file name="GCBase_MD_VC141_v3_1_Basler_pylon.dll" hashalg="SHA1"/>

<file name="GenApi_MD_VC141_v3_1_Basler_pylon.dll" hashalg="SHA1"/>

<file name="Log_MD_VC141_v3_1_Basler_pylon.dll" hashalg="SHA1"/>

d. Save the manifest file with the same file name as assemblyName64 and with
a .manifest file extension, e.g., save it as Grab64.Assembly.manifest.

e. Set up your installation routine to copy the .manifest file to the directory containing the
64-bit pylon DLLs, e.g., C:\Program Files\Grab\dll\pylon64.

3.3.5.2 Creating the Application Configuration Files (.config Files)

The .config files point each application’s executable file to its corresponding .manifest file. For
each executable file (32 bit or 64 bit), you must create a separate .config file.

Each .config file must be copied to the same directory as the corresponding executable file.

1. Open a text editor, e.g., Notepad.

2. Add the following lines:

<configuration>
<windows>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<probing privatePath="dllPath"/>

</assemblyBinding>
</windows>

</configuration>

3. Replace dllPath by the relative paths to the directories containing the 32-bit and 64-bit pylon
DLLs. Delimit each directory path with a semicolon. Each path must be relative to the directory
containing the application’s executable files. You can use the double-dots specifier to denote
the parent directory of the current directory.
Example: Assuming the following target directories (sample values):

 Executable files: C:\Program Files\Grab\bin\

 32-bit pylon DLLs: C:\Program Files\Grab\dll\pylon32\

 64-bit pylon DLLs: C:\Program Files\Grab\dll\pylon64\

In this case, you must replace dllPath by ..\dll\pylon32;..\dll\pylon64.

4. Save the file with the same file name as your application’s executable and with a .config file
extension, e.g., save it as Grab.config.

5. If your application is available in 32-bit and 64-bit versions, save the file again with the file
name of your 64-bit executable file, e.g., Grab64.config.

6. Set up your installation routine to copy the .config file(s) to the directory containing your
application’s executable file(s).

To create and deploy the .config file:

AW00136209000 Copy Deployment

Basler Cameras 24

3.3.5.3 Embedding the Manifest

After you have created the .manifest and .config files, you must embed the manifest in the source
code of your application.

1. Open your application project in an IDE, e.g., Visual Studio.

2. If your application is available only in a 32-bit version or only in a 64-bit version:

a. Add the following lines at the beginning of your application’s source code:

#pragma comment(linker,"/manifestdependency:\"type='win32' name='assemblyName' \
version='1.0.0.0' processorArchitecture='procArch' \"")

b. Replace assemblyName by the name of your assembly, e.g., Grab.Assembly.

Replace procArch by x86 for a 32-bit application or by amd64 for a 64-bit application.
Note: type must always be win32, also for 64-bit applications.

3. If your application is available in both 32-bit and 64-bit versions:

a. Add the following lines at the beginning of your application’s source code:

#if defined _M_IX86
#pragma comment(linker,"/manifestdependency:\"type='win32' name='assemblyName32' \
version='1.0.0.0' processorArchitecture='x86' \"")
#elif defined _M_X64
#pragma comment(linker,"/manifestdependency:\"type='win32' name='assemblyName64' \
version='1.0.0.0' processorArchitecture='amd64' \"")
#endif

b. Replace assemblyName32 by the 32-bit assembly name (e.g., Grab.Assembly)

c. Replace assemblyName64 by the 64-bit assembly name (e.g., Grab64.Assembly).

4. Build all versions of your project and deploy the newly created builds.

To embed the assembly manifest in your application project:

Revision History AW00136209000

25 Basler Cameras

Revision History

Document

Number

Date Changes

AW00136201000 06 Nov 2015 Initial release of the document.

AW00136202000 02 May 2017 Added Basler.Pylon.dll in Table 2 on page 4.

AW00136203000 10 May 2017 Removed information about camera interface-specific runtime

redistributable packages in Chapter 1 on page 1 and Chapter 2 on

page 2.

AW00136204000 06 Nov 2017 Added required files in Table 2 on page 4.

AW00136205000 12 Jun 2018 Updated file names throughout the document.

AW00136206000 12 Feb 2019 Updated file names throughout the document.

AW00136207000 02 Jul 2019 Revised the entire document to reflect changes due to the release of

the pylon Camera Software Suite version 6. Among other things,

information for IEEE 1394 has been removed and information for

CoaXPress 2.0 has been added.

AW00136208000 06 Dec 2019 Internal version.

AW00136209000 30 Jan 2020 Updated information for CoaXPress 2.0 in Table 2 on page 4 and

Table 3 on page 8.

	Contacting Basler Support Worldwide
	Table of Contents
	1 Introduction
	2 Runtime Redistributable Package
	3 Copy Deployment
	3.1 Using Copy Deployment
	3.2 Choosing Files for Copy Deployment
	3.2.1 pylon Files
	3.2.2 Visual C++ Runtime Files
	3.2.3 pylon Camera Driver Packages

	3.3 Locating the pylon DLLs
	3.3.1 Method 1: Placing the pylon DLLs in the Application’s Working Directory
	3.3.2 Method 2: Registering the Application Path in the Windows Registry
	3.3.3 Method 3: Running the Application Using a Batch File
	3.3.4 Method 4: Using SetDllDirectory in the Source Code
	3.3.5 Method 5: Creating and Embedding Assembly Manifests

	Revision History

